Skip to main content
All CollectionsCloudGen Access Docs
How to Deploy a CloudGen User Directory Connector With Kubernetes
How to Deploy a CloudGen User Directory Connector With Kubernetes
Barracuda Admin avatar
Written by Barracuda Admin
Updated over 2 years ago

The steps described in this article assume familiarity with kubernetes. The required images are available in the Dockerhub registry under the organization FydeInc.

Prerequisites:

Helm chart

The helm chart is available at Artifactory and covers the Barracuda CloudGen Access Directory Connector.

Check the Artifactory link or ‘values.yaml’ file for all the configuration parameters.

Deployment

Create a ‘custom-values.yaml’ file with the desired values. The minimum required configurations for a successful deployment are:

  • ‘authToken.existingSecret.*’ or ‘authToken.newSecret.value’

  • ‘authToken.type’

  • ‘enrollmentToken.existingSecret.*’ or ‘enrollmentToken.newSecret.value’

Add the helm repo and install the chart:

helm repo add barracuda-cloudgen-access https://barracuda-cloudgen-access.github.io/helm-charts 
helm install my-release barracuda-cloudgen-access/cga-directory-connector --namespace  my-namespace --set-file custom-values.yaml 

Optionally, instead of using “helm install”, export the yaml files and deploy using your preferred method:

 helm template barracuda-cloudgen-access/cga-directory-connector --set-file custom-values.yaml 

Example

Extended example for Google Workspaces directory with Prometheus service monitors:

nameOverride: cga-directory-connector-my-deploy 
serviceMonitor: true 
priorityClassName: high-priorityauthToken:  
  type: google 
  existingSecret:  
    name: cga-directory-connector-secret 
    key: auth-token 
  
enrollmentToken: 
   existingSecret: 
     name: cga-directory-connector-secret 
     key: enrollment-token 
 
logLevel: info 
 
customEnv:   - name: FYDE_GROUPS_INCLUDED 
    value: "Engineering"   - name: FYDE_ONLY_MATCHED_GROUPS 
	value: “true” resources: 
  limits: 
    cpu: 100m 
    memory: 128Mi   requests:  
    cpu: 100m
    memory: 128Mi 
Did this answer your question?